Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.

نویسندگان

  • Elaine Quinlan
  • Sonia Partap
  • Maria M Azevedo
  • Gavin Jell
  • Molly M Stevens
  • Fergal J O'Brien
چکیده

One of the biggest challenges in regenerative medicine is promoting sufficient vascularisation of tissue-engineered constructs. One approach to overcome this challenge is to target the cellular hypoxia inducible factor (HIF-1α) pathway, which responds to low oxygen concentration (hypoxia) and results in the activation of numerous pro-angiogenic genes including vascular endothelial growth factor (VEGF). Cobalt ions are known to mimic hypoxia by artificially stabilising the HIF-1α transcription factor. Here, resorbable bioactive glass particles (38 μm and 100 μm) with cobalt ions incorporated into the glass network were used to create bioactive glass/collagen-glycosaminoglycan scaffolds optimised for bone tissue engineering. Inclusion of the bioactive glass improved the compressive modulus of the resulting composite scaffolds while maintaining high degrees of porosity (>97%). Moreover, in vitro analysis demonstrated that the incorporation of cobalt bioactive glass with a mean particle size of 100 μm significantly enhanced the production and expression of VEGF in endothelial cells, and cobalt bioactive glass/collagen-glycosaminoglycan scaffold conditioned media also promoted enhanced tubule formation. Furthermore, our results prove the ability of these scaffolds to support osteoblast cell proliferation and osteogenesis in all bioactive glass/collagen-glycosaminoglycan scaffolds irrespective of the particle size. In summary, we have developed a hypoxia-mimicking tissue-engineered scaffold with pro-angiogenic and pro-osteogenic capabilities that may encourage bone tissue regeneration and overcome the problem of inadequate vascularisation of grafts commonly seen in the field of tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Osteogenic and Angiogenic Collagen Glycosaminoglycan-Bioactive Glass Scaffold for Bone Tissue Engineering

INTRODUCTION One of the biggest challenges in regenerative medicine is vascularisation of tissue engineered constructs following in vivo implantation. One way of addressing this challenge is to develop scaffolds containing pro-angiogenic factors to facilitate angiogenesis following implantation. The pro-angiogenic avenue explored in this research is the activation of the cellular Hypoxia Induci...

متن کامل

Stem Cell Bone Differentiation on Polyol Lactic Acid Composite Nanoparticles Containing 45S5 Bioactive Glass Nanoparticles

Abstract Background and Objectives Now day, using of stem cells and nanoparticles in the differentiation of stem cells is considered as a therapeutic approach. The purpose of this study was to synthesize and characterize nanocomposite polyacrylic polycarboxylic acid containing nanoparticles of biologically active glass 45S5 crushed and assessment effect of this composite on the propagation and...

متن کامل

Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as...

متن کامل

Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimension...

متن کامل

Glass and Glass-Ceramic Scaffolds: Manufacturing Methods and the Impact of Crystallization on In-Vitro Dissolution

Synthetic biomaterials mimicking bone morphology have expanded at a tremendous rate. Among all, one stands out: bioactive glass. Bioactive glasses opened the door to a new genre of research into materials able to promote the regeneration of functioning bone tissue. However, despite their ability to promote cell attachment, proliferation and differentiation, these materials are mainly used as gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2015